Can Tp Utils Module
- class mtf.network_port.iso_tp.custom_can_tp.can_tp_utils.CanFrameType
Provides a structured way to represent and identify different types of frames in the CAN protocol
- SINGLE
- FIRST
- CONSECUTIVE
- FLOW_CONTROL
- UNKNOWN
- classmethod get_frame_type(addressing_format: AddrFormat, payload: List[int]) CanFrameType
Converts the upper 4 bits into a member of the CanFrameType enumeration. If these bits do not correspond to any member of the enumeration, it returns CanFrameType.UNKNOWN.
- Args:
addressing_format (AddrFormat): An object or value defining the addressing format payload (FramePayload): A sequence of bytes
- Returns:
CanFrameType
- __new__(value)
- conjugate()
Returns self, the complex conjugate of any int.
- bit_length()
Number of bits necessary to represent self in binary.
>>> bin(37) '0b100101' >>> (37).bit_length() 6
- to_bytes(length, byteorder, *, signed=False)
Return an array of bytes representing an integer.
- length
Length of bytes object to use. An OverflowError is raised if the integer is not representable with the given number of bytes.
- byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
- signed
Determines whether two’s complement is used to represent the integer. If signed is False and a negative integer is given, an OverflowError is raised.
- from_bytes(byteorder, *, signed=False)
Return the integer represented by the given array of bytes.
- bytes
Holds the array of bytes to convert. The argument must either support the buffer protocol or be an iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the buffer protocol.
- byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
- signed
Indicates whether two’s complement is used to represent the integer.
- as_integer_ratio()
Return integer ratio.
Return a pair of integers, whose ratio is exactly equal to the original int and with a positive denominator.
>>> (10).as_integer_ratio() (10, 1) >>> (-10).as_integer_ratio() (-10, 1) >>> (0).as_integer_ratio() (0, 1)
- real
the real part of a complex number
- imag
the imaginary part of a complex number
- numerator
the numerator of a rational number in lowest terms
- denominator
the denominator of a rational number in lowest terms
- class mtf.network_port.iso_tp.custom_can_tp.can_tp_utils.CanFlowStatus
Provides a structured way to represent the different states or status codes used to control data flow in CAN protocols.
- CLS
- WAIT
- OVFLW
- __new__(value)
- conjugate()
Returns self, the complex conjugate of any int.
- bit_length()
Number of bits necessary to represent self in binary.
>>> bin(37) '0b100101' >>> (37).bit_length() 6
- to_bytes(length, byteorder, *, signed=False)
Return an array of bytes representing an integer.
- length
Length of bytes object to use. An OverflowError is raised if the integer is not representable with the given number of bytes.
- byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
- signed
Determines whether two’s complement is used to represent the integer. If signed is False and a negative integer is given, an OverflowError is raised.
- from_bytes(byteorder, *, signed=False)
Return the integer represented by the given array of bytes.
- bytes
Holds the array of bytes to convert. The argument must either support the buffer protocol or be an iterable object producing bytes. Bytes and bytearray are examples of built-in objects that support the buffer protocol.
- byteorder
The byte order used to represent the integer. If byteorder is ‘big’, the most significant byte is at the beginning of the byte array. If byteorder is ‘little’, the most significant byte is at the end of the byte array. To request the native byte order of the host system, use `sys.byteorder’ as the byte order value.
- signed
Indicates whether two’s complement is used to represent the integer.
- as_integer_ratio()
Return integer ratio.
Return a pair of integers, whose ratio is exactly equal to the original int and with a positive denominator.
>>> (10).as_integer_ratio() (10, 1) >>> (-10).as_integer_ratio() (-10, 1) >>> (0).as_integer_ratio() (0, 1)
- real
the real part of a complex number
- imag
the imaginary part of a complex number
- numerator
the numerator of a rational number in lowest terms
- denominator
the denominator of a rational number in lowest terms
- class mtf.network_port.iso_tp.custom_can_tp.can_tp_utils.CanFCConfig
Store and manage flow control parameters in CAN communications.
- flow_status: CanFlowStatus
- block_size: int
- separation_time: int
- __init__(flow_status: CanFlowStatus = CanFlowStatus.CLS, block_size: int = 0, separation_time: int = 0) None
- mtf.network_port.iso_tp.custom_can_tp.can_tp_utils.get_payload_length(pdu_size)
determines the appropriate payload length based on the size of the PDU, adhering to minimum sizes and valid lengths for larger sizes
- Args:
pdu_size (int): The size of the PDU.
- Returns:
int